Image d'un intervalle par une fonction continue, image d'un segment. Continuité de la fonction réciproque d'une fonction continue strictement monotone sur un intervalle.

Cadre:

- \diamond Les fonctions de cette leçon sont à valeurs réelles, définies sur un intervalle I de \mathbb{R} , non vide et non réduit à un point.
- \diamond On prend comme point de vue sur $\mathbb R$ celui d'un corps commutatif totalement ordonné vérifiant l'axiome de la borne supérieure.

Pré-requis:

- ♦ Les suites réelles (théorème de composition d'une suite et d'une fonction continue).
- \diamond Une fonction numérique monotone définie sur un intervalle I admet en tout point $x_0 \in I$, une limite à gauche et une limite à droite et que, si f est croissante,

$$\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) \le f(x_0) \le \lim_{\substack{x \to x_0 \\ x > x_0}} f(x),$$

les inégalités étant inversées lorsque f décroit.

Introduction: Un intervalle de $\mathbb R$ est une partie I de $\mathbb R$ telle que pour tous réels a,b,c, les relations $a \in I, c \in I$ et a < b < c impliquent que $b \in I$. La propriété de la borne supérieure permet d'établir qu'il y a exactement neuf types d'intervalles, à savoir $\mathbb R$, les ensembles de la formes $\{x: x \in \mathbb R, x \leq a\}, \{x: x \in \mathbb R, x < a\}, \{x: x \in \mathbb R, x \geq a\}, \{x: x \in \mathbb R, x > a\}$ où $a \in \mathbb R$ et $\{x: x \in \mathbb R, b \leq x \leq a\}, \{x: x \in \mathbb R, b < x \leq a\}, \{x: x \in \mathbb R, b \leq x < a\}, \{x: x \in \mathbb R, b \leq x \leq a\}$ où $(a,b) \in \mathbb R^2$ et $a \leq b$.

Les huit derniers ensembles sont notés $]-\infty,a[, [a,+\infty[,]a,+\infty[, [a,b],]a,b],$ [a,b[et]a,b[.

Les intervalles du type [a, b] sont appelés des segments.

0.1 Image d'un intervalle par une fonction continue.

Soit f une fonction numérique définie sur un intervalle I de \mathbb{R} , continue sur I, a et b deux points de I (avec a < b) tels que $f(a) \cdot f(b) \le 0$. Il existe alors un réel c dans l'intervalle [a, b] tel que f(c) = 0.

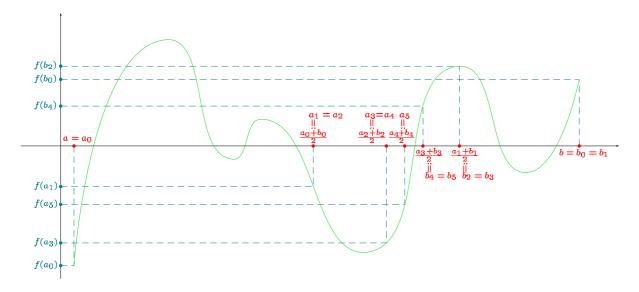
Démonstration. Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites définies par les relations:

1.

$$a_0 = a \text{ et } b_0 = b$$

$2. \ \forall n \in \mathbb{N},$

$$(a_{n+1}, b_{n+1}) = \begin{cases} \left(\frac{a_n + b_n}{2}, b_n\right) & \text{si } f(a_n) \cdot f\left(\frac{a_n + b_n}{2}\right) > 0\\ \left(a_n, \frac{a_n + b_n}{2}\right) & \text{sinon} \end{cases}.$$



On vérifie par récurrence que les suites satisfont à: a_n et b_n sont éléments de [a, b], $f(a_n)f(b_n) \leq 0$, $a_n \leq a_{n+1}$, $b_{n+1} \leq b_n$ et $b_n - a_n = \frac{b-a}{2^n}$. Il en résulte qu'elles sont adjacentes, que leur limite c commune est élément de [a, b]. La fonction f étant continue en c, un passage à la limite dans la première relation donne $(f(c))^2 \leq 0$ donc f(c) = 0.

Corollaire 0.1.2.

Soit f une application numérique définie sur un intervalle I de \mathbb{R} . Si f est continue sur I, alors f(I) est un intervalle de \mathbb{R} .

Démonstration. Soit u et v deux éléments de f(I) tels que u < v (on suppose que f(I) n'est pas réduit à un point) et t un nombre réel tel que u < t < v. Introduisons deux éléments a et b de I tels que f(a) = u et f(b) = v et g la fonction définie par g(x) = f(x) - t, g est continue sur I et vérifie les hypothèses du théorème précédent qui nous garantit l'existence d'un réel c, situé entre a et b (donc dans I), tel que g(c) = 0, ainsi t = f(c) est bien un élément de f(I).

Remarque: Le type de l'intervalle f(I) peut être différent de celui de I. Par exemple, l'image de l'intervalle semi-ouvert [-1,1[par la fonction $x\mapsto x^2$ est l'intervalle fermé [0,1]. Les deux paragraphes qui suivent précisent cette question.

0.2 Image d'un segment par une fonction continue.

△ Lemme 0.2.1.

Soit f une fonction numérique définie sur un segment [a, b]. Si f est continue sur [a, b], f est bornée sur [a, b].

Démonstration. Supposons f non bornée sur [a, b].

Soit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites définies par les relations:

1.

$$a_0 = a \text{ et } b_0 = b$$

 $2. \ \forall n \in \mathbb{N},$

$$(a_{n+1},b_{n+1}) = \begin{cases} \left(\frac{a_n + b_n}{2}, b_n\right) & \text{si } f \text{ est born\'ee sur } \left[a_n, \frac{a_n + b_n}{2}\right] \\ \left(a_n, \frac{a_n + b_n}{2}\right) & \text{si } f \text{ est non born\'ee sur } \left[a_n, \frac{a_n + b_n}{2}\right] \end{cases}.$$

On vérifie alors par récurrence que les suites ainsi construites satisfont, pour n naturel, à a_n et b_n sont élément de [a,b], f est non bornée sur $[a_n,b_n]$, $a_n \leq a_{n+1}$, $b_{n+1} \leq b_n$ et $b_n - a_n = \frac{b-a}{2^n}$. Il en résulte qu'elles sont adjacentes, que leur limite commune c est élément de [a,b]. Or f est non bornée sur $[a_n,b_n]$, on peut donc construire une suite réelle $(c_n)_{n\in\mathbb{N}}$ telle que pour tout n, $c_n \in [a_n,b_n]$ et $|f(c_n)| \geq n$. La première relation nous montre que la suite $(c_n)_{n\in\mathbb{N}}$ converge vers c, ce qui est contradictoire avec la seconde relation si on suppose f continue sur [a,b].

Théorème 0.2.2.

Soit f une fonction numérique définie sur un intervalle I. Si f est continue sur I, l'image par f de tout segment de I est un segment de I.

Démonstration. Soit [a,b] un segment de I. D'après le lemme précèdent, il existe deux réels m et M tel que f([a,b]) soit l'un des intervalles]m,M[,]m,M], [m,M[,[m,M]]. On justifiera de l'impossibilité des trois premières formes en introduisant les fonctions $x\mapsto \frac{1}{f(x)-m}$ ou $x\mapsto \frac{1}{M-f(x)}$ dont on orbsevera qu'elles sont définies et continues sur [a,b] sans y être bornées.

0.3 Image d'un intervalle par une fonction continue monotone (respectivement strictement monotone).

Soit I un intervalle de \mathbb{R} d'extrémité a et b (a et b éléments de $\overline{\mathbb{R}}$, a < b) et f une application monotone sur I.

Posons

$$\alpha = \lim_{\substack{x \to a \\ x > a}} f(x)$$
 et $\beta = \lim_{\substack{x \to b \\ x < b}} f(x)$ $(\alpha \text{ et } \beta \text{ dans } \overline{\mathbb{R}}).$

Si f est continue sur I, alors f(I) est l'intervalle d'extrémités α , β , ces extrémités étant de même type respectivement de a et b de I si on suppose de plus que f est strictement monotone.

Démonstration. Quitte à raisonner sur -f, on va supposer f croissante sur I. Examinons d'abord le cas I = [a, b] avec a, b réels. f étant croissante, $f([a, b]) \subset [f(a), f(b)]$. Par ailleurs, f étant continue, c'est un intervalle qui contient f(a) et f(b), autrement dit qui contient [f(a), f(b)]; donc f([a, b]) = [f(a), f(b)]. Enfin, la continuité de f en a et en b donne:

$$\alpha = \lim_{\substack{x \to a \\ x > a}} f(x) = f(a)$$
 et $\beta = \lim_{\substack{x \to b \\ x < b}} f(x) = f(b)$.

Nous ramenons ensuite tout les autres cas de figure à ce qui précède, par exemple, si I =]a, b[, nous introduisons deux suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ de points de I, strictement décroissante pour l'une et strictement croissante pour l'autre de limite respective a et b et telle que pour tout n naturel, $x_n < y_n$. Alors,

$$I =]a, b[= \bigcup_{n \in \mathbb{N}} [x_n, y_n]$$

de sorte que

$$f(I) = \bigcup_{n \in \mathbb{N}} \left[f(x_n), f(y_n) \right].$$

Mais la suite de terme général $f(x_n)$ est décroissante de limite α et la suite de terme général $f(y_n)$ est décroissante de limite β d'où

$$]\alpha, \beta[\subset \bigcup_{n\in\mathbb{N}} [f(x_n), f(y_n)] \subset [\alpha, \beta]$$

et la première partie du résultat est vérifiée.

Si nous supposons f strictement croissante sur I, pour tout naturel n, $\alpha < f(x_n) < f(y_n) < \beta$ donc ni α ni β n'appartiennent à $\bigcup_{n \in \mathbb{N}} [f(x_n), f(y_n)]$ d'où $f(I) =]\alpha, \beta[$.

0.4 Caractérisation des fonctions continues sur un intervalle parmi les fonctions monotones.

Nous avons vu que l'image d'un intervalle par une fonction continue est un intervalle, la réciproque est fausse mais:

Théorème 0.4.1.

Soit f une fonction numérique définie sur un intervalle I et monotone sur I. Alors, f est continue sur I si, et seulement si f(I) est un intervalle.

Démonstration. Seul le fait que la condition est suffisante reste à prouver.

Soit donc f monotone sur I telle que f(I) est un intervalle. Quitte à raisonner sur -f, on peut supposere f croissante sur I. Ecrivons

$$I = \{x : x \in I, x < x_0\} \cup \{x_0\} \cup \{x : x \in I, x > x_0\}$$

de sorte que f(I) apparaisse comme la réunion de trois ensembles, le premier admettant $\lim_{\substack{x\to x_0\\x< x_0}} f(x)$ comme borne supérieure, le second étant le singleton $\{f(x_0)\}$ et le troisième admettant $\lim_{\substack{x\to x_0\\x> x_0}} f(x)$ comme borne inférieure. Sachant que

$$\lim_{\substack{x \to x_0 \\ x < x_0}} f(x) \le f(x_0) \le \lim_{\substack{x \to x_0 \\ x > x_0}} f(x),$$

l'hypothèse f(I) est un intervalle nécessite bien l'égalité des trois nombres de la relation précèdente, c'est-à-dire la continuité de f en x_0 .

On ajustera enfin la démonstration dans le cas où x_0 est une extrémité éventuelle de I.

0.5 Continuité de la fonction réciproque d'une fonction continue strictement monotone sur un intervalle.

[™] Théorème 0.5.1.

Soit f une application numérique définie sur un intervalle I de \mathbb{R} , continue et strictement monotone sur I. Alors f est injective sur I, réalise donc une bijection de I sur f(I) qui est un intervalle J de \mathbb{R} et l'application réciproque f^{-1} qui va de J sur I est strictement monotone, de même sens de variation que f et continue sur J.

Démonstration. Il est clair que la stricte monotonie de f implique son injectivité et que f^{-1} est strictement monotone sur J. Puisque $f^{-1}(J)$ n'est autre que l'intervalle I, on conclut par le théorème précèdent que f^{-1} est continue sur J.